Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A new route for the synthesis of Culn0.5Ga0.5Se2 powder for solar cell applications

Identifieur interne : 004768 ( Main/Repository ); précédent : 004767; suivant : 004769

A new route for the synthesis of Culn0.5Ga0.5Se2 powder for solar cell applications

Auteurs : RBID : Pascal:10-0260337

Descripteurs français

English descriptors

Abstract

In this paper, a new and simple method is described that does not use an autoclave to synthesize copper indium gallium diselenide (Culn0.5Ga0.5Se2) particles from the constituent elements. The process also does not require a post-synthesis selenization step. A solvo-thermal route is followed in which the constituent element powders are dissolved and made to react in a solvent such as ethylenediamine (ED), or triethylenetetramine (TETA). Crystal structure, morphology, composition, and particle size distribution of prepared particles were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), and dynamic light scattering (DLS), respectively. The band gap energies of the prepared particles were determined using an UV-VIS-NIR spectrophotometer. The results indicate that the solvent temperature and the synthesis time significantly affect the formation of single-phase Culn0.5Ga0.5Se2 and the crystallinity of the particles. Further, the measured band gap energy for the prepared particles is close to that of the bulk material. For example, the single-phase plate-like CuIn0.5Ga0.5Se2 particles with an average particle size of 413.9 nm which can be successfully synthesized at a temperature of 250°C in 15 h, have a band gap energy of 1.15 eV.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:10-0260337

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">A new route for the synthesis of Culn
<sub>0.5</sub>
Ga
<sub>0.5</sub>
Se
<sub>2</sub>
powder for solar cell applications</title>
<author>
<name sortKey="Yassitepe, Emre" uniqKey="Yassitepe E">Emre Yassitepe</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials Science and Engineering, University of Delaware</s1>
<s2>Newark, DE 19716</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Newark, DE 19716</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Khalifa, Zaki" uniqKey="Khalifa Z">Zaki Khalifa</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials Science and Engineering, University of Delaware</s1>
<s2>Newark, DE 19716</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Newark, DE 19716</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Physics, Beni-Suef University, Salah Salem Street</s1>
<s2>Beni-Suef- 62111</s2>
<s3>EGY</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Égypte</country>
<wicri:noRegion>Beni-Suef- 62111</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jaffari, G Hassnain" uniqKey="Jaffari G">G. Hassnain Jaffari</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Physics and Astronomy, University of Delaware</s1>
<s2>Newark, DE 19716</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Newark, DE 19716</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chou, Chuen Shii" uniqKey="Chou C">Chuen-Shii Chou</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Department of Mechanical Engineering, National Pingtung University of Science and Technology</s1>
<s2>Pingtung 912</s2>
<s3>TWN</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Taïwan</country>
<wicri:noRegion>Pingtung 912</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zulfiqar, Sonia" uniqKey="Zulfiqar S">Sonia Zulfiqar</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials Science and Engineering, University of Delaware</s1>
<s2>Newark, DE 19716</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Newark, DE 19716</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Department of Chemistry, Quaid-e-Azam University</s1>
<s2>Islamabad</s2>
<s3>PAK</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Pakistan</country>
<wicri:noRegion>Islamabad</wicri:noRegion>
</affiliation>
</author>
<author>
<name>MUHAMMAD ILYAS SARWAR</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials Science and Engineering, University of Delaware</s1>
<s2>Newark, DE 19716</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Newark, DE 19716</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Department of Chemistry, Quaid-e-Azam University</s1>
<s2>Islamabad</s2>
<s3>PAK</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Pakistan</country>
<wicri:noRegion>Islamabad</wicri:noRegion>
</affiliation>
</author>
<author>
<name>SYED ISMAT SHAH</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials Science and Engineering, University of Delaware</s1>
<s2>Newark, DE 19716</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Newark, DE 19716</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Physics and Astronomy, University of Delaware</s1>
<s2>Newark, DE 19716</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Newark, DE 19716</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">10-0260337</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0260337 INIST</idno>
<idno type="RBID">Pascal:10-0260337</idno>
<idno type="wicri:Area/Main/Corpus">004479</idno>
<idno type="wicri:Area/Main/Repository">004768</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0032-5910</idno>
<title level="j" type="abbreviated">Powder technol.</title>
<title level="j" type="main">Powder technology</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Autoclave</term>
<term>Bulk material</term>
<term>Crystallinity</term>
<term>Light scattering</term>
<term>Morphology</term>
<term>Particle size</term>
<term>Particle size distribution</term>
<term>Powder</term>
<term>Scanning electron microscopy</term>
<term>Ultraviolet radiation</term>
<term>X ray diffraction</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Poudre</term>
<term>Autoclave</term>
<term>Morphologie</term>
<term>Distribution dimension particule</term>
<term>Diffraction RX</term>
<term>Microscopie électronique balayage</term>
<term>Diffusion lumière</term>
<term>Rayonnement UV</term>
<term>Cristallinité</term>
<term>Matériau vrac</term>
<term>Dimension particule</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this paper, a new and simple method is described that does not use an autoclave to synthesize copper indium gallium diselenide (Culn
<sub>0.5</sub>
Ga
<sub>0.5</sub>
Se
<sub>2</sub>
) particles from the constituent elements. The process also does not require a post-synthesis selenization step. A solvo-thermal route is followed in which the constituent element powders are dissolved and made to react in a solvent such as ethylenediamine (ED), or triethylenetetramine (TETA). Crystal structure, morphology, composition, and particle size distribution of prepared particles were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), and dynamic light scattering (DLS), respectively. The band gap energies of the prepared particles were determined using an UV-VIS-NIR spectrophotometer. The results indicate that the solvent temperature and the synthesis time significantly affect the formation of single-phase Culn
<sub>0.5</sub>
Ga
<sub>0.5</sub>
Se
<sub>2</sub>
and the crystallinity of the particles. Further, the measured band gap energy for the prepared particles is close to that of the bulk material. For example, the single-phase plate-like CuIn
<sub>0.5</sub>
Ga
<sub>0.5</sub>
Se
<sub>2</sub>
particles with an average particle size of 413.9 nm which can be successfully synthesized at a temperature of 250°C in 15 h, have a band gap energy of 1.15 eV.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0032-5910</s0>
</fA01>
<fA02 i1="01">
<s0>POTEBX</s0>
</fA02>
<fA03 i2="1">
<s0>Powder technol.</s0>
</fA03>
<fA05>
<s2>201</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>A new route for the synthesis of Culn
<sub>0.5</sub>
Ga
<sub>0.5</sub>
Se
<sub>2</sub>
powder for solar cell applications</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>YASSITEPE (Emre)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KHALIFA (Zaki)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>JAFFARI (G. Hassnain)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>CHOU (Chuen-Shii)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>ZULFIQAR (Sonia)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>MUHAMMAD ILYAS SARWAR</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>SYED ISMAT SHAH</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Materials Science and Engineering, University of Delaware</s1>
<s2>Newark, DE 19716</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Physics, Beni-Suef University, Salah Salem Street</s1>
<s2>Beni-Suef- 62111</s2>
<s3>EGY</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Physics and Astronomy, University of Delaware</s1>
<s2>Newark, DE 19716</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Mechanical Engineering, National Pingtung University of Science and Technology</s1>
<s2>Pingtung 912</s2>
<s3>TWN</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Department of Chemistry, Quaid-e-Azam University</s1>
<s2>Islamabad</s2>
<s3>PAK</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>27-31</s1>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13653</s2>
<s5>354000181184490040</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>20 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0260337</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Powder technology</s0>
</fA64>
<fA66 i1="01">
<s0>CHE</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this paper, a new and simple method is described that does not use an autoclave to synthesize copper indium gallium diselenide (Culn
<sub>0.5</sub>
Ga
<sub>0.5</sub>
Se
<sub>2</sub>
) particles from the constituent elements. The process also does not require a post-synthesis selenization step. A solvo-thermal route is followed in which the constituent element powders are dissolved and made to react in a solvent such as ethylenediamine (ED), or triethylenetetramine (TETA). Crystal structure, morphology, composition, and particle size distribution of prepared particles were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), and dynamic light scattering (DLS), respectively. The band gap energies of the prepared particles were determined using an UV-VIS-NIR spectrophotometer. The results indicate that the solvent temperature and the synthesis time significantly affect the formation of single-phase Culn
<sub>0.5</sub>
Ga
<sub>0.5</sub>
Se
<sub>2</sub>
and the crystallinity of the particles. Further, the measured band gap energy for the prepared particles is close to that of the bulk material. For example, the single-phase plate-like CuIn
<sub>0.5</sub>
Ga
<sub>0.5</sub>
Se
<sub>2</sub>
particles with an average particle size of 413.9 nm which can be successfully synthesized at a temperature of 250°C in 15 h, have a band gap energy of 1.15 eV.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D07Q07</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Poudre</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Powder</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Polvo</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Autoclave</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Autoclave</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Autoclave</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Morphologie</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Morphology</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Morfología</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Distribution dimension particule</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Particle size distribution</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Distribución dimensión partícula</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Diffraction RX</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>X ray diffraction</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Difracción RX</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Microscopie électronique balayage</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Scanning electron microscopy</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Microscopía electrónica barrido</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Diffusion lumière</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Light scattering</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Difusión luz</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Rayonnement UV</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Ultraviolet radiation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Radiación ultravioleta</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Cristallinité</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Crystallinity</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Cristalinidad</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Matériau vrac</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Bulk material</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Material a granel</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Dimension particule</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Particle size</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Dimensión partícula</s0>
<s5>11</s5>
</fC03>
<fN21>
<s1>172</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004768 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 004768 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:10-0260337
   |texte=   A new route for the synthesis of Culn0.5Ga0.5Se2 powder for solar cell applications
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024